

LA-UR-21-23220

Approved for public release; distribution is unlimited.

Title: InteRFACE an Introduction

Author(s): Rowland, Joel C.

Intended for: Presentation to the USGCRP Coastal Group

Issued: 2021-04-05

Interdisciplinary Research for Arctic Coastal Environments

InteRFACE – A systems approach to Arctic coastal challenges

- Recognition that coasts bridge the intersection between land and ocean, and are critically important to humans
- Requires science that addresses coastal processes and ecosystems, upstream watersheds, ocean dynamics, and human activity
- Arctic is unique from all other coastal regions due to sea ice, permafrost, and sensitivity to global climate drivers and feedbacks.

Project Structure and Science

- Funded by Earth System Modeling and Data (Hnilo)
 - Model Analysis (Joseph)
 - Model Development (Davis)
 - Multisector (Vallario)
- Five institutions, UAF (21%) and NCAR joining 2021
- Four common earth science foci
 - Sea ice & ocean dynamics
 - Permafrost hydrology
 - Coastal change
 - Marine Biogeochemistry
- Integrated with four multisector foci
 - Transportation
 - Resource development
 - Settlements
 - Marine ecology

Data

Focused modeling for InteRFACE science

Multi-resolution Arctic focus

Landfast ice dynamics

Incorporation of WaveWatch-E3SM for polar applications

Multi-scale nested watershed modeling

Arctic mixing ocean parameterizations

Benthic biogeochemistry

Integrating themes to guide cross-cutting science

Uncertainty

Quantify the role of sea ice state and predictability on complex human system dynamics

Seasonality

Identify the impact of seasonality on coupled system responses across the land-ocean and natural-human interfaces.

Typologies

Characterizing regions of the Arctic based on a set of unique properties and dynamics.

Goal: Identify and fill gaps in knowledge and predictive capabilities

Today's decisions requires knowledge to constrain possible trajectories of the coupled land-ocean-human interface over the coming decades

What are the key drivers that determine whether to harden or move a community?

How will sea ice loss impact the cost of resource extraction?

How will marine primary productivity impact food resources?

Phase I: Focused on Alaskan north slope

- Foundational for future work
- Significant opportunities for collaboration with DOE and non-DOE research programs
- Data-rich relative to other arctic regions
- Of vital national importance
- Offers strong opportunities to develop new observational efforts in the Arctic

earthweek.com

Active Collaborations

NASA ICESat-2 Assimilation: Bitz (U. Washington) and Petty (U. Maryland)

Arctic Maritime Spill Response Modeling Working Group on the Meter-Scale: Kinner (U. New Hampshire)

MOSAiC Observation Integrations into Models: Holland (NCAR), Smith (U. Washington), Hutchings (OSU)

Ocean Mixing: Pearson (OSU), Timmermans (Yale)

BOEM Landfast Ice Climatology: Mahoney (U. Alaska)

Partnership with Toolik Lake LTER, Cardenas (UT Austin)

MOSAIC Collaboration, Rob Rember (IARC)

NOAA – Alaska Mapping Executive Committee (AMEC), Kinsman

USGS - Coastal Climate Impacts Alaska, Pacific Coastal and Marine Science Center

Other DOE funded projects: NGEE-Arctic, ICoM, E3SM, and HiLAT-RASM